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1 Introduction

In many fields of application, the need for online-learning as an efficient
and scalable machine learning technique increases. Either the amount of
data is too big or continuously growing as in the emerging field of big data
and data stream processing, or the application is time variant and thus re-
quires a continuous adaptation to changing conditions. In all scenarios, the
two most important learning tasks are regression and classification. Most
algorithms for online-learning in these tasks are quite similar and can be
readily used for both. A common algorithmic basis for both is often an
approximation structure that is linear in the parameters (LIP) for which
a set of basis functions is fixed and only the parameter vector is adapted
by learning. This has the advantage of fixed memory and computational
effort which is of great importance either because of timeliness of the re-
sults, e.g. in embedded systems or streaming applications, or because of
the huge amount of data to be processed otherwise. Different approximati-
on structures, like fuzzy systems or polynomials belong to this category of
LIP approximation structures.

To facilitate the development of new algorithms in this area and to systema-
tically evaluate these methods, a suitable common framework is necessary.
Such a framework must contain state of the art learning algorithms for
comparison and be easily extensible with new ones. Furthermore it should
be applicable to both tasks of regression and classification and should al-
low an easy setup of investigations with different properties of a learning
scenario, e.g. degree of data noisiness, data linearity, or independence of



consecutive data. Just as well, the approximation structure must also be ex-
changeable to compare its impact on the resulting performance. This way,
a systematic investigation of learning algorithms within the application is
possible.

2  Online-Learning Libraries

Different libraries for the application of online-learning or learning of LIP
approximations have been developed in recent years. One of the most wi-
despread is MOA (Massive Online Analysis) [1] as a library for data stream
mining. It is focused on stream classification, stream clustering and outlier
detection, providing a variety of algorithms for each task. Yet, regressi-
on is not present in this library. Another big library for online-learning is
Jubatus [2] which provides algorithms for fast online-learning with a fo-
cus on distributed systems. The library contains algorithms for the tasks
of classification, regression, recommendation, graph mining, and anomaly
detection, but only one learning algorithm for regression is present. Fur-
thermore, Jubatus was mainly developed for distribution of learning tasks
to several machines as to cope with high data rates and not to investigate
an online-learning algorithm itself in a systematic way.

A library with tighter focus on the investigation of online-learning algo-
rithms is OLL (Online-Learning Library) [3]. But with a focus on natural
language processing this library likewise does not include the task of re-
gression. Additionally, it contains only some basic algorithms and is not up
to date. More learning algorithms but also with a focus on linear classifica-
tion are available in LIBLINEAR [4]. But here the linear classification is
not embedded into the setup of online learning, and again regression is not
included. Similarly the most up-to-date library LIBOL (Library for Onli-
ne Learning Algorithms) [5] includes many state of the art algorithms but
again only for binary and here as well multi-class classification.

In conclusion, no library exists that connects online-learning for both tasks
of regression and classification and combines it with tools for a systematic
investigation. Especially the task of regression is severely underrepresen-
ted in available libraries. Furthermore, all libraries dealing with LIP appro-
ximations only use the simple linear model y = w” - x where the output is
just a linear combination of the input values. Thus no more elaborate ap-
proximation structure is used and the learning algorithms cannot be easily
investigated in their interplay with the structure.



3 Scope of UOSLib

In this paper we hence present the UOSLib (Unified Online-learning Sy-
stems Library) as an extensible open source library of online-learning al-
gorithms for Matlab. The online-learning task is characterized by learning
on a sequence of data which can be described in steps (see Alg. 1) both for
classification and regression. In step ¢ the learning algorithm is presented
an instance x, € RY which is transferred from input space to parameter
space by a fixed LIP approximation structure through a vector of basis
functions ¢(x;) € R", 1.e. to allow more expressiveness than a simple linear
approximation. This input is then used to predict its label y, through a mo-
del y; = f(¢(x;), w;) with the parameter vector w,, which is the hypothesis
maintained by the learning algorithm. Afterwards, the correct label y;, is
given and the learning algorithm suffers an instantaneous loss I(y;,y;) > 0
reflecting how wrong the prediction was. With the new pair of an instan-
ce and its corresponding label, henceforth called an example (x;,y;), the
learning algorithm updates its hypothesis to wy .

Alg. 1: Stepwise Online-Learning
initialize parameter vector w; € R”"
//second order

forr=1,2,...,Npdo
receive x, € R?
predict its label y; = f(¢(x,), w;)
reveal true label y,
suffer loss I(¥;, y;)
update parameter w1 = @, + AWy, (X4, Y1), 21
//second order

end

Two classes of learning algorithms can be distinguished. On the one hand,
first order algorithms update the parameter vector only based on the current
parameter vector w, and the example (x;,y,;). Thus they are memoryless
and deal with every example the same way throughout the whole learning
process. On the other hand, second order algorithms use additional fixed
size information X, to update the way of incorporating a new example as
well (shown grayed in Alg. 1). For example, the recursive least squares
method [6] incrementally tracks an estimate of the covariance matrix and
uses it to further adjust the parameter update.

Depending on the learning task the evaluation of the output and the loss
function differ. For regression the evaluation is given by y; = f(é(x), w;) =
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Fig. 1: Block diagram of the UOSLib-modules.

w! - ¢(x) with y; € R. A commonly used loss function is the squared loss

LGy = G — i) . (1)

For classification the evaluation is typically given by y; = f(¢(x), w,) =
sgn(w! - ¢(x)) with ¥, € {—1, +1}. Here a commonly used loss function is
the hinge loss

2)

- 0 ify, -y, >1
‘ 1 -y, -y, otherwise.

Within this learning scheme UOSLib provides a basis to compare a varie-
ty of approximation structures ¢(x) and learning algorithms w; — w4
together with a collection of different learning scenarios for both tasks.

4 Concept

To support the development of new learning algorithms with UOSLib, Mat-
lab was chosen as a widespread basis on the one hand to allow for rapid
prototyping and easy analysis with onboard tools and on the other hand
because it is optimized for linear algebra operations which is the core of
LIP approximations.

The concept of UOSLib is based on three aspects as shown in Fig. 1. First,
a scenario generator can be set up to generate synthetic data sets in a re-
producible way to test the algorithms in different situations based on the
exactly same data. The scenario generator hence allows to adjust specific
properties of the learning scenario like noise level on the target labels, data
density, independence of the input data, etc. This way the influence of these
properties on the different learning algorithms can be evaluated systemati-
cally. Through a fixed random seed, the complete setup is reproducible and



can be applied to different combinations of learning algorithm and appro-
ximation structure. Additionally, an interface to load (benchmark) datasets
from a file is provided for an easy junction to external data sources. For
external data some properties can be adjusted systematically as well, like
added noise and order of presentation. All generated learning scenarios are
easily mapped either to a regression task or to a binary classification task
by taking the sign of the output. Most importantly, a setup can be uniquely
specified by a footprint consisting of one tuple specifying the scenario and
one the approximation structure, as shown in the following chapters, thus
making it reproducible (by other researchers).

Second, for the learning process common interfaces to different approxi-
mation structures as well as learning algorithms are provided to easily ex-
change the structure or algorithm in use for comparison. This allows to test
different combinations of

e learning task: regression or classification
e learning scenario: different properties of the data
e approximation structure: mapping input to parameter space R? — R”

e learning algorithm: update of the parameter vector

by exchanging or systematically varying one of the four parts.

Third, the learning process is evaluated with different measures that are
tracked over time. As online-learning is a continuous process, a cumula-
tive performance measurement in a single number cannot present all re-
levant information. Rather, the progress of different measures over time
1s important to analyze the behavior. Therefor, UOSLib incorporates three
measures that are updated after every learning step ¢. The cumulative loss
[ in Eq. (3) corresponds to the online performance, i.e. how well the pre-
dictive quality is at the respective step. In contrast to that, the mean data
loss /; in Eq. (4) corresponds to the quality on all examples seen up to the
respective step, i.e. how well the general relationship of the examples was
learned. Furthermore, for synthetic data it is possible to estimate the mean
ground-truth loss [, in Eq. (5), 1.e. how well the learned approximation suits
undisturbed and regularly sampled examples, thus covering the ability to
generalize and cancel noise. To determine this, additional test examples
(x;,y;) are directly drawn on a fine-grained regular grid covering the com-
plete input space regardless of the density of training data and without any



disturbance.
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5 Main UOSLib Modules

To ease the use of the UOSLib functionality, a survey of its main functional
units is given in the following with the relevant UOSLib function headers.

5.1 Scenario Generator

The scenario generator provides a set of examples which is used for trai-
ning in a sequential order. All scenarios are scaled to enforce that the input
values lie in the interval [-10, +10] and the output is restricted to the in-
terval [-1, +1]. By fixing the seed rSeed of the random number generator,
the examples are fully reproducible. The generator is called through the
function icl_loadDS which has the following interface:

[data groundTruth dim] =
icl_loadDS(mode, func, ND, NG, noise, minPath)

The setup specifies the learning task with the parameter mode which is eit-
her regression or classification. The underlying function used to generate
the examples is given by the string func that selects one of several prede-
fined test functions (see Tab. 1) that differ in their amount of nonlinearity
and changes of the monotonicity. If this string starts with dataset, it is in-
terpreted as a path to a file from which the examples are loaded. Parameter
ND specifies the number of examples to generate for learning and parameter
NG the number of regularly sampled ground truth data per dimension for
evaluation. The parameter noise sets the standard deviation of normally
distributed noise on the training labels. Lastly, parameter minPath selects
whether the examples are ordered randomly or in a sequential way, re-
sembling a continuous movement of the samples taken within input space.



If parameter minPath is true, the randomly generated examples are or-
dered in such a way that, starting at the lowest value in each dimension,
i.e. —10, the next value in the sequence is chosen from the remaining set of
randomly drawn examples to have a minimal distance to the current value
(see Fig. 2 for an example).

’ func \ Description \ Dim. ‘
linear straight line 1
nonlin exponential function 1
sine sine function 1
linear2 linear plane 2
twocircles minimum distance to two corners 2
crossedridge | crossed ridge function 2
spiral spiral loop (typical classification task) 2
highdimlin linear hyperplane 20
highdimnonlin | squareroot hyperplane 20
relearn 3d-order-polynomial changing coefficients af- | 1
ter half of training data

dataset... If the string starts with dataset, the string
will be interpreted as a relative path to a fi-
le. The file should contain arbitrary many co-
lumns of inputs and one last column of the tar-
get output with space-separation.

Tab. 1: Different possible functions to draw data from.

The scenario generator function returns the examples in data as a two
dimensional matrix with one example in each row and the ground-truth
data for comparison in groundTruth. Depending on the function selected
for generation, the dimensionality of the scenario differs which is returned
in dim. All in all, the learning scenario hence can be uniquely identified by
the following tuple:

(mode, func, ND, NG, noise, minPath, rSeed)

5.2 Approximation Structures

The approximation structure is determined by the vector of basis functi-
ons ¢ : RY — R". Currently three different approximation structures are
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Fig. 2: Example of a randomly generated set of 40 examples with its ac-

cording minimal path shown by the connections reflecting the order of pre-

sentation.

implemented. First, an additive polynomial of the form

d N,
fo @) = wp+ )" > W - (5)" (6)

n=1 m=1

is given as an example for approximation structures with globally effective
parameters by the function icl_genPoly. It produces an additive com-
bination of polynomials of order N, in every component x, of the input
vector. This approximation structure has the advantage of increasing on-
ly linearly in complexity with the scenario dimensionality at the cost of
highly interacting parameters. The according function has the interface

ILS = icl_genPoly(order, dim)

receiving the polynomial order and the dimensionality. It returns a struc-
ture, containing the vectors of basis functions ¢, ,,(x) and w.

In contrast to that, two variants of a local approximation structure are im-
plemented as grid-based lookup tables (GLT), one with an equally spaced
grid (Fig. 3 left) and one with a spacing which can be set arbitrarily (Fig. 3
right). On such a grid in input space, the output is defined by the hight
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Fig. 3: Example of a grid-based lookup table with linear interpolati-
on for two dimensions. The grid-points are either equally spaced, here
with five points per dimension (left), or specified dimension-wise here at
{-10,-5,-2,0,2,5, 10} for the first dimension and {-10,-3,0, 3, 10} for
the second (right).

of the approximation at the grid-points and either a linear or a Gaussian
interpolation in-between. Linear interpolation ensures total locality of the
parameter influence, whereas Gaussian interpolation results in a smoother
surface. The parameters of a GLT thus only have local influence on the out-
put and hence do not interact as much. This causes a completely different
learning behavior than global parameters. But with such a local structure,
the curse of dimensionality leads to an exponentially increasing number of
parameters with increasing dimensionality. For implementing this structure
either icl_genGLT can be used with the interface

ILS = icl_genGLT(num, dim, base)

to get a regularly spaced grid in input space with the parameters num for
the number of grid positions in each of the dim dimensions and base to
choose between linear and Gaussian.

Alternatively, a more complex setup of a GLT structure is possible with the
function icl_genGLTarb by defining an arbitrary grid structure through

ILS = icl_genGLTarb(loc, dim, base)

where an array of locations loc is specified containing a location array for
each input dimension. For the example of Fig. 3 this array has the form
{[_10, _53 _2, O’ 2a 5’ 10] s [_103 _37 03 3, 10]}



The used approximation structure is uniquely identified as well by:
(Poly, order) or (GLT, num, base) or (GLT, loc, base)

These approximation structures hence allow for an easy comparison of
learning algorithms with globally or locally effective parameters. This di-
stinction is especially significant for online-learning as a single example
only presents local information for the parameter update.

5.3 Learning Algorithms

The main goal of UOSLib is to implement and to compare a variety of new
and existing state of the art learning algorithms as well for regression as
classification easily. On the one hand, they can be divided into the groups
of first and second order learning algorithms. On the other hand, they are
distinguished regarding their applicability to regression and/or classifica-
tion. Currently the list of implemented learning algorithms contains the
following.

First order algorithms are:

e Perceptron: Classical online-learning algorithm [7]
e PA: Passive-Aggressive algorithm in the three variants [8]:

— PA: Parameter update fully aggressive
— PA-I: Limited aggressiveness (linear slack variable)
— PA-II: Limited aggressiveness (quadratic slack variable)

e IRMA: Incremental Risk Minimization Algorithm [9]
Second order algorithms are:
CW: Confidence Weighted learning [10]
e AROW: Adaptive Regularization Of Weight vectors [11]
e GH: Gaussian Herding [12]
e RLS: Recursive Least Squares [6]

Except for IRMA, which is only applicable for regression tasks, and CW,
which is only applicable for classification tasks, every algorithm can be
used for both tasks.

To add a new learning algorithm, it must implement two interface func-
tions. The first should provide algorithm specific initializations, e.g. the



covariance matrix of RLS. it therefor receives the structure ILS as it is ge-
nerated by the approximation structure setup and the input dimensionality.
Any information to be saved is changed within the returned ILS structure.

ILS = icl_initILS(ILS, dim)

The second function is used to update the ILS structure, i.e. its parameter
vector and possible further information, with one single example incre-
mentally. It receives again the ILS structure, as well as the example (x, y),
the label yp predicted beforehand, and the mode reflecting whether the task
is regression or classification.

ILS = icl_learn(ILS, x, y, yp, mode)

5.4 Evaluation

For evaluation of a learning run, the three measures of Eq. 3-5 are plotted
over time to show their progress during learning. In Fig. 4 an example plot
of such an evaluation is given for the comparison of PA and RLS on a
simple scenario (mode = REG, func = sine, ND = 300, NG = 100, noise =
0.2, minPath = false, rSeed = 12345) with (GLT, num = 15, base = gauss)
as the approximation structure. For one- and two-dimensional scenarios a
visualization of the resulting approximation and the examples is supplied
as well (see Fig. 5). This visualization can also be done live to follow the
learning process with every example.

These evaluations help to reveal and compare the characteristic properties
of the learning algorithms. In the example of Fig. 4 on a long run, RLS
outperforms the predictive performance of PA with a slightly lower ground
truth loss. But for low data densities, as in the beginning RLS tends to over-
fitting as the ground truth loss is high even though the data loss is low. Thus
it is temporarily slightly outperformed by PA in the cumulative loss.

Similarly, classification tasks can be evaluated and visualized. In Fig. 6 the
results of PA and AROW are compared for the learning scenario (mode =
CLA, func = crossedridge, ND = 500, NG = 20, noise = 0.05, minPath
= true, rSeed = 12345) with the approximation structure (GLT, num = 15,
base = lin). The plot shows the given examples of the two classes with
dots and crosses and additionally in white and gray the respective regions
the learned approximation assigns to them. Apparently, both classifiers re-
present the basic structure of the data but they differ in some regions due
to noise.
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Fig. 4: Example plot of learning performance measures for a comparison
of PA (solid line) and RLS (dashed line) on a simple regression task with
a given GLT approximation structure.
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Fig. 5: Example plot of a resulting approximation for a comparison of PA
(top) and RLS (bottom) on a simple one-dimensional regression task with
a given GLT approximation structure.
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Fig. 6: Resulting approximation for a comparison of PA (left) and AROW
(right) on a simple binary classification task with a given GLT approxima-
tion structure. The examples for the classes are shown by dots and crosses
and the resulting class regions in gray and white.

6 Conclusion

UOSLib is an open source library for systematic analysis of online-learning
algorithms and online-learning tasks in general. It is easy to use and easy
to extend. Based on Matlab, it consists of the four basic building blocks of
scenario generator, approximation structure, learning algorithm, and eva-
luation. Each is easily extended with further algorithms and allows a sy-
stematic investigation of combinations of different instances for these buil-
ding blocks.

The setup of an investigation is easily described through unique identifiers
and thus very easy to reproduce, also by other researchers. UOSLib is thus
well-suited for reference investigations in scientific publishing and may
hence enhance on research standards.

Future work on the UOSLib covers three issues. First, a wider base of ap-
proximation structures and learning algorithms needs to be implemented,
in order to include all state of the art approaches. Second, the scenario ge-
nerator is a central feature. Its capability to set up different properties of
a learning scenario allows solid research. Hence, further key features of
generally relevant scenarios need to be identified and included in the ge-
nerator. For easy use, they should be summarized into a scenario footprint
which can be easily referenced. And third, for ease of use a more versatile
graphical user interface would support wider accessibility of the library.
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